Anesthesia Ventilators 101

Featuring the Hallowell 2000

Heidi Reuss-Lamky, LVT, VTS (Anesthesia & Analgesia, Surgery)
Oakland Veterinary Referral Services
Bloomfield Hills, Michigan 48302
hreuss@ovrs.com
Why Ventilate?

- Anesthetic agents are respiratory depressants—

 All anesthetized patients hypoventilate!

 - Difficulty maintaining $\text{PaCO}_2 < 40$ mmHg

GOAL: Maintaining normal CO_2 tensions in arterial blood
Why Ventilate?

- Hypoventilation / apnea / panting
 - Helps maintain stable anesthesia plane
- Gross obesity / Pickwickian
- Prolonged surgical procedures
 - >90 minutes (especially horses)
- Neuromuscular blockers
- Patient positioning
- Lung disease
- Intracranial disease
Why Ventilate?

- Thoracic surgery & trauma
 - Flail chest or diaphragmatic hernia
- Convenience!
Carbon Dioxide Physiology

- CO$_2$ transferred in the body in 3 forms:
 - 60-70% transported as bicarbonate ion
 - 20-30% transported bound to proteins
 - *5-10% dissolved in plasma.

- *Plasma component measured during blood gas analysis as arterial partial pressure of carbon dioxide (PaCO$_2$)
Carbon Dioxide Physiology

Mixed venous

PO₂ = 40
PCO₂ = 46

O₂ CO₂

PO₂ = 102
PCO₂ = 40

End capillary

PO₂ = 102
PCO₂ = 40

Blood flow
Carbon Dioxide Physiology

■ ETCO$_2$ Requirements
 ▪ Blood flow
 ▪ Cellular metabolism
 ▪ Alveolar ventilation

■ Great CPR tool!
Normal ETCO$_2$ Values

<table>
<thead>
<tr>
<th>PaCO$_2$</th>
<th>Condition in blood</th>
<th>State of vent</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 45</td>
<td>Hypercapnia</td>
<td>Hypoventilation</td>
</tr>
<tr>
<td>35-45</td>
<td>Eucapnia</td>
<td>Normal</td>
</tr>
<tr>
<td>< 35</td>
<td>Hypocapnia</td>
<td>Hyperventilation</td>
</tr>
</tbody>
</table>
Carbon Dioxide Physiology

- Assess cardiac output secondary to hypovolemia
Carbon Dioxide Physiology…

When $\text{EtCO}_2 \neq \text{PaCO}_2$

- Low pulmonary blood flow
 - Shock / cardiac arrest

- Significant clinical change “delays”
 - Metabolic disorder
 - Pulmonary embolism (V/q)
 - Pneumonia/atalectesis (v/Q)
Anesthesia Ventilators

- Double circuit units

 - Utilize 2 gas sources

A. Driving gas enters
B. Scavenger
C. Overflow gas from patient circuit
D. Bellows
E. Pop-off valve
F. Tidal volume adjustment
H. Bellows housing
Ventilator Terminology

- **Tidal volume** \((V_T)\)- amount of gas exchanged in one respiratory cycle

- **Minute volume** \((V^m)\)- total amount of gas (in liters) exchanged per minute
 - Dependent on \(V_T\) & breaths per min (BPM):
 \[
 V_T \times \text{BPM} = V^m
 \]
Ventilator Terminology

- **IPPV / IPPB**: Intermittent positive pressure (PP) maintained during inspiration; passive expiration

 Anesthesia machines are *intermittent dosing devices*...?

- **PEEP**: Positive end-expiratory pressure
 - Hallowell vents maintain 5 cm H$_2$O PEEP
 - SurgiVet SAV2500 maintains 2 cm H$_2$O PEEP
Ventilators Simplified:
Know Your Equipment!

- Ensure anesthesia machine is equipped for ventilator accessibility
The Front Panel

Four Basic Controls:

- **I/O Power Switch**: Green light above switch indicates ventilator is ON
- **Rate (BPM)**: Set respiratory rate in breaths per minute
- **Volume (ml)**: Control volume (size) of breath being delivered
- **Maximum Working Pressure Limit (MWPL)**: Set an upper limit above which pressure should not exceed during cycle
 - Set between 20-30 cm H₂O
Ventilator Connections

Ventilator parts:

- **Power Plug**
- **Breathing System:** Clear hose
- **Exhaust:** Blue hose
- **Driving Gas:** Black hose
- **O₂ Hose:** Green hose
Connect Oxygen Supply

- Additional oxygen connection needed on anesthesia machine to allow ventilator access

- Attach ventilator’s loose oxygen hose to open connection

- Tighten oxygen hose to secure
 - Hissing sounds occur when O$_2$ plugged in to supply tanks!
Connect Breathing System

- Follow clear hose (labeled BREATHING SYSTEM) from back of ventilator to unconnected end
- Connect hose to re-breathing bag connection on anesthesia machine
- Ventilator is now a ‘re-breathing bag’
Insert Airway Pressure Sensor

- Connect APST tube to **INSPIRATORY** side of breathing system
 - Small, clear tube connected to a larger male/female connector
 - Confirm inspiratory side with oxygen flush
Connect Wye Hoses

- Attach wye hoses as usual

- APST is now connected between wye hose and anesthetic machine on the **INSPIRATORY** side
Connect Exhaust

2 Options:

- Remove existing scavenging hose

- Connect scavenger to (2nd) open port
 - Remove red cap from port opening first
Plug It In!

- Don’t forget to plug power cord from ventilator into a wall outlet
Pop-off Valve

- Close pop-off valve once ventilator is connected to anesthesia machine
 - Prevents leaks

- It is **very** important to remember to OPEN pop-off valve once ventilator is disconnected!
Check for Leaks

- Occlude end of wye hose
- Turn on oxygen until bellows is completely inflated
- Turn off O₂
- Bellows will stay inflated if no leaks present

Anesthesia machine should be checked for leaks both *before* and *after* connecting ventilator.
Changing Bellows

- **Rule of thumb:**
 - <30 lb = small bellows
 - >30 lb = large bellows
*LEAN BODY WEIGHT ONLY

- Pediatric bellows: 0-300 ml (0.5-15 kg)
- Adult bellows: ≤1500 ml (up to 75 kg)
- Foal bellows: ≤ 3000 ml (up to 150 kg)
Removing Bellows

- Once removed, put bellows housing in a safe place
Fitting Bellows

- Small bellows fits seated onto smaller (inner) ring
 - Large bellows requires outer ring

- Ensure bellows placed on ventilator *circumferentially*
 - Only very bottom of accordion should be attached to ventilator

- **Misplacement will prevent bellows from fully inflating**
Setting Bellows

- Ensure correct placement by gently lifting bellows until last accordion ring is visualized in place
 - Eliminate concaved or folded areas in bellows
Secure Bellows Housing

- Replace corresponding bellows housing
- Firmly secure housing
- Turn only base of housing (not tall area) to avoid damage
Secure Bellows Housing

- Once housing is firmly set, rotate clockwise until housing is locked
 - If housing unit is not properly set, cracked or damaged, a leak may result

- Ensure that volume numbers are visible and facing front of anesthesia machine
Set Maximum Working Pressure Limit (MWPL)

- Typically 20-30 cm H$_2$O
- Safety feature!
Peak Inspiratory Pressure (PIP)

- Lung compliance is important for determining adequate pressure to inflate the lungs.

 \((\text{volume/pressure/kg})\)

- PIP should be between 12 to 30 cm H\(_2\)O

Never exceed 20 cm of H\(_2\)O without the doctor’s permission or consent!
MWPL Pressure Alarm

- When MWPL set-point is exceeded ventilator alarms and terminates inspiratory phase of breathing cycle
- When pressure reaches preset limit, a yellow light will flash and a short tone will sound
- If excessive pressure is not immediately resolved, cycling is paused and alarm sounds continuously
Set Respiratory Rate

Breaths per minute (BPM):

- Dogs: 8 to 14
- Cats: 10 to 14
Inspiratory: Expiratory Ratio

- Inspiratory time is typically 1 to 1.5 seconds in small animals.

- I:E ratio minimally should be 1:2 (e.g., 1:3, 1:4, based on respiratory rate).

- The Hallowell 2000 I:E ratio is preset 1:2
 - Set so positive interpleural pressure minimally interferes with venous return and cardiac output.

- SurgiVet SAV2500 has adjustable I:E ratio
 - Inspiratory time can be set 0.5 to 3 seconds.
Pre-set Volume

- Ensure Volume control is at lowest possible settings
 - Lowest V_T deliverable = 20 mls
Set Tidal Volume

Calculate the Tidal Volume:

15 mL/kg (10-20 mL/kg)

- Guideline: ~ ½ the patient’s lbs. X 10

- GOAL: 35-45 mmHg (40 mmHg)

- Set volume to minimal settings and adjust prn
 - Estimate tidal volume from bellows housing scale during spontaneous respiration
Set Volume

- Begin with Volume control at lowest possible settings
 - Once patient connected, slowly increase volume based on ETCO$_2$
Volume Alarm

Low Breathing System Pressure

- Alarm activated at end of inspiration if <5 cm H₂O PEEP sensed by APST
- **Alarm sounds like a siren/stolen car alarm and will activate due to:
 - Small breath delivered
 - Patient disconnected
 - Oxygen running low
 - Patient breathing against ventilator
Inspiratory Hold (Insp Hold)

- Pauses breathing cycle
- Holds lungs inflated

- Breath holding feature will abort once MWPL set point is exceeded

Turn off or decrease oxygen flow to minimize pressure changes and possible breath abortion
Endotracheal tube placement is important!

Shorten ET tubes to eliminate excessive ‘dead space’

Correct

Incorrect
Capnography Proper Set Up

Capnogram

PCO₂ = 40

End-tidal PCO₂

PCO₂ = 0
Capnogram Interpretation

![Normal Capnogram Diagram](image)

- **Inspiration**
- **Expiration**
- **Inspired carbon dioxide**
- **End tidal carbon dioxide**

CO₂ (mmHg)

TIME
Capnogram Interpretation
Capnogram Interpretation

![Capnogram Image]
Capnogram Interpretation
Capnogram Interpretation

Rebreathing

\[\text{CO}_2 \text{ (mmHG)} \]

TIME
Capnogram Interpretation
Capnogram Interpretation

Hyperventilation

\[\text{CO}_2 \text{ (mmHg)} \]

\[0 \]
Capnogram Interpretation
Capnogram Interpretation

Cuff Leak

\[
\text{CO}_2 \text{ (mmHG)} \quad \text{TIME}
\]

40
0
Capnogram Interpretation

![Capnogram Diagram](image-url)
Capnogram Interpretation
Capnogram Interpretation
Capnogram Interpretation

Cardiogenic Oscillations

\[CO_2 \text{ (mmHg)} \]

TIME

40

0
Capnogram Interpretation
Capnogram Interpretation

- Watch for small movements of pressure manometer needle!
Ventilator Weaning

Respiratory drive regulated via oxygen & carbon dioxide tension in blood

Two methods:

- ‘Cold turkey’
 - Turn ventilator off
 - Wait 1 minute
 - If no spontaneous breath is observed, turn ventilator on for 1 breath
 - Repeat process until spontaneous respirations return
Ventilator Weaning

- **Gradual method**
 - Turn **Rate** down as low as possible (<6 BPM)
 - Turn **Volume** down as low as possible to avoid inciting alarms
 - Observe bellows for return of spontaneous respirations
 - Once patient has resumed spontaneous respiration, turn ventilator off
Troubleshooting Capnography

Equipment Considerations

- Malfunctioning one-way valves
- Inadequate seal at ET tube cuff
- Inadequate oxygen flow rate
- Moisture within sampling line
- Ineffective (old/wet) CO$_2$ absorbent
- Esophageal intubation
- Disconnects
Troubleshooting Capnography

Patient Considerations

- Thoracotomy cases
 - ETCO₂ margin of error
 - ABG result ~ 6 mmHg higher than ETCO₂

- Metabolic derangement
 - Metabolic acidosis cases may have respiratory alkalosis as pH compensation

- GDV / diaphragmatic hernia cases
 - May require smaller Vₜ; increase BPM
Artificial Ventilation Precautions

- Decrease in arterial blood pressure and cardiac output due to:
 - Average airway pressure >10 mmHg (Ventilator induced)
 - Low circulating blood volume (e.g., anemia, blood loss or dehydration)
 - Impaired sympathetic nervous system activity (e.g., anesthesia, local anesthetics, shock)
Artificial Ventilation Precautions

- Positive pressure in trachea and lungs may be transmitted to thoracic cavity resulting in:
 - Impaired venous return
 - Decreased cardiac output
Ventilator Induced Lung Injury (VILI)

- Barotrauma: pressure-induced lung injury
- Volutrauma: volume-induced lung injury
- Biotrauma: due to sepsis, +/- SIRS, etc.
- Atelectotrauma: 2° atelectasis
- Oxygen Toxicity: >12-16(+) hours
- Long-term = pneumonia risk
Know Your Equipment!

- Know how to properly use ventilator \textit{before} an emergency arises
 - Improper hook up or use of equipment can result in lung injury! (e.g., barotrauma, volutrauma)

- **Under no circumstances** should O$_2$ flush on anesthesia machine be used while connected to a patient!
 - Using the flush button during inspiratory phase of breathing cycle can cause severe injury!!!

- **Do not** use alcohol or any other harsh chemical to clean ventilator or bellows
 - Use only a damp cloth
Recommended Reading & Viewing:
www.capnography.com
www.hallowell.com
Anesthesia Ventilators 101
YouTube
Training: SurgiVet SAV25000 (sic) Ventilator