Problem: Minimizing respiratory movement during thoracic microsurgery in mice

Solution: A high frequency oscillatory ventilator for the smallest animals you are capable of intubating

The MicroVent 1 from Hallowell EMC is a dual mode ventilator. It delivers standard intermittent positive pressure ventilation (IPPV) at 75 to 240 bpm or high frequency oscillatory ventilation (HFOV) at 750 to 2400 "bpm." The entire breathing system has a volume of 0.6 cc. There are four parameters to control: Oxygen flow, Frequency (breaths per minute), Amplitude (tidal volume), and Mean Airway Pressure (Mean P_{Aw}). No anesthesia machine is required, only a vaporizer for procedures involving gas anesthetics.

A small flow of fresh gas, in the range of 50-100ml/min, is set. This gas can be oxygen as provided by the built-in flow meter or any mixture of gases provided from an external source. When using gas anesthetics, this fresh gas flows through an anesthetic vaporizer and on to the breathing system where it passes the patient connection, flows through an open needle valve, and on to a scavenging system if required. The animal may breathe spontaneously from this stream of gas as it passes the patient connection at all times. The needle valve is used to restrict the flow of this gas stream and thereby adjust the Mean P_{Aw}. This pressure will hold the lungs expanded permitting continuous gas exchange with a minimum of atelectatic alveoli. Also connected to the breathing system at the patient connection is a glass cylinder containing a floating puck. With "all" the alveoli held open in a steady state the puck is set in motion as per the settings for amplitude and frequency. During HFOV, minuscule tidal volumes are superimposed on the mean pressure to promote gas exchange by molecular diffusion and a number of other mechanisms. No longer do you have the gross movement of the respiratory cycle so distracting to the microsurgeon.

Gas exchange during HFO ventilation is accomplished via several mechanisms. Traditional convective or bulk flow occurs in the proximal airways very close to the endotracheal tube. Molecular diffusion motivated by the partial pressure gradients of the gases of interest in the system, O₂, CO₂ and anesthetic primarily. Turbulences produced by bulk flow, Taylor dispersions, and eddy diffusion allow gas exchange between the alveoli and circuit gases. This process is enhanced by the high frequencies of ventilation used in HFOV.

Incorporated into the MicroVent 1 is a waste gas scavenging interface that allows you to connect directly to any scavenging system, direct vacuum, an active or a passive scavenging system. When connected directly to a vacuum source the scavenging flow is set with a flow meter on the front panel.

Hallowell Engineering and Manufacturing Corp is located at 63 Eagle St., 2nd Floor Pittsfield, MA 01201. 413-445-4263, fax 413-496-9254. www.hallowell.com